Class OptimalDtwClassifier
This IDistanceClassifier implementation will consider both test and training samples and claculate the threshold to separate the original and forged signatures to approximate EER. Note that this classifier is not applicable for real world scenarios. It was developed to test the theoratical boundaries of threshold based classification
Inherited Members
Namespace: SigStat.Common.PipelineItems.Classifiers
Assembly: SigStat.Common.dll
Syntax
public class OptimalDtwClassifier : PipelineBase, ILoggerObject, IProgress, IPipelineIO, IDistanceClassifier, IClassifier
Constructors
| Improve this Doc View SourceOptimalDtwClassifier(Func<Double[], Double[], Double>)
Initializes a new instance of the OptimalDtwClassifier class.
Declaration
public OptimalDtwClassifier(Func<double[], double[], double> distanceFunction = null)
Parameters
Type | Name | Description |
---|---|---|
Func<System.Double[], System.Double[], System.Double> | distanceFunction | The distance function. |
Properties
| Improve this Doc View SourceDistanceFunction
The function used to calculate the distance between two data points during DTW calculation
Declaration
public Func<double[], double[], double> DistanceFunction { get; set; }
Property Value
Type | Description |
---|---|
Func<System.Double[], System.Double[], System.Double> |
Features
FeatureDescriptors to consider during classification
Declaration
public List<FeatureDescriptor> Features { get; set; }
Property Value
Type | Description |
---|---|
List<FeatureDescriptor> |
Sampler
Sampler used for selecting training and test sets during a benchmark
Declaration
public Sampler Sampler { get; set; }
Property Value
Type | Description |
---|---|
Sampler |
WarpingWindowLength
Length of the warping window to be used with DTW
Declaration
public int WarpingWindowLength { get; set; }
Property Value
Type | Description |
---|---|
System.Int32 |
Methods
| Improve this Doc View SourceTest(ISignerModel, Signature)
Returns a double value in the range [0..1], representing the probability of the given signature belonging to the trained model.
Declaration
public double Test(ISignerModel signerModel, Signature signature)
Parameters
Type | Name | Description |
---|---|---|
ISignerModel | signerModel | |
Signature | signature | The signature to test |
Returns
Type | Description |
---|---|
System.Double |
Train(List<Signature>)
Trains a model based on the signatures and returns the trained model
Declaration
public ISignerModel Train(List<Signature> signatures)
Parameters
Type | Name | Description |
---|---|---|
List<Signature> | signatures |
Returns
Type | Description |
---|---|
ISignerModel |